
Binghamton

University

CS-220

Spring 2016

X86 Debug

Computer Systems Section 3.11

Binghamton

University

CS-220

Spring 2016

GDB is a “Source Level” debugger

• We have learned how to debug at the C level

• Now, C has been translated to X86 assembler!

• How does GDB play the shell game?
• Makes it seem like we execute C code

• Actually we are executing X86 Assembler Code

• How do we debug at the X86 level?

Binghamton

University

CS-220

Spring 2016

Simple C Function

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

Binghamton

University

CS-220

Spring 2016

gcc -m32 -O0 -S prog.c

prog.c

2. int myfunc(int a,int b) {

3. int c;

4. c = a + 3;

5. c = c + b;

6. return c;

7. }

prog.s
myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Binghamton

University

CS-220

Spring 2016

myfunc x86 view

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC x0000 000A

xFFFF FFD8

…

Reg Value

ebp xFFFF FFE0

eax x0000 000A

v

Binghamton

University

CS-220

Spring 2016

Cross Reference Information

• Function Cross Reference
• Always keep a list of function names, and the location of the first

instruction in that function in the executable command

• The –g flag to the compiler tells the compiler to generate and save
more cross reference information

• For each line of code, the address of the first instruction associated with
that code

• For each variable, the location and type of the variable stored in memory

• For each function, the parameter list

Binghamton

University

CS-220

Spring 2016

Example Cross Reference
xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC x0000 000A

xFFFF FFD8

…

add $0x3,%eax x0804 839d 83c003

mov 0x8(%ebp),%eax x0804 839a 8b4508

sub $0x10,%esp x08048 397 83ec10

mov %esp,%ebp x0804 8395 89e5

pushl %ebp x0804 8394 55

Func Location Parms

myfn x0804 839a a,b

main … argc,argv

Fn/Line Location

myfn.4 x0804 839a

myfn.5 …

myfn.6

Variable Location Type

myfn.a xFFFF FFE8 int

myfn.b xFFFF FFEC int

myfn.c xFFFF FFDC int

Binghamton

University

CS-220

Spring 2016

Breakpoint Processing

• When you set a breakpoint…

• GDB looks up address of first instruction at that breakpoint

• Replaces the beginning of the instruction with a TRAP (e.g. 1/0)

• When the trap is executed, it causes the OS to transfer to the trap
handler… (in this case, gdb has registered a trap handler)

• The trap handler invokes the GDB prompt

• On continue, replace trap with correct instruction, single step,
then replace trap

Binghamton

University

CS-220

Spring 2016

Example break 4
Func Location Parms

myfn x0080 483b1 a,b

main … x0804 839a

Fn/Line Location

myfn.4 x0804 839a

myfn.5 …

myfn.6

main.11

main.12

Variable Location Type

myfn.a xFFFF FFE8 int

myfn.b xFFFF FFEC int

myfn.c xFFFF FFDC int

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC x0000 000A

xFFFF FFD8

…

add $0x3,%eax x0804 839d 83c003

mov 0x8(%ebp),%eax x0804 839a TRAP; 8b4508

sub $0x10,%esp x08048 397 83ec10

mov %esp,%ebp x0804 8395 89e5

pushl %ebp x0804 8394 55

Binghamton

University

CS-220

Spring 2016

Displaying x86 instructions

(gdb) disas[semble] [/m]

• prints object and x86 assembler version of current function

• /m – include C symbols/instructions when available

Binghamton

University

CS-220

Spring 2016

Example of disassemble with debug
(gdb) disassemble /m
Dump of assembler code for function main:
9 int main() {
0x080483ae <main+0>: push %ebp
0x080483af <main+1>: mov %esp,%ebp
0x080483b1 <main+3>: sub $0x18,%esp

10 int ma;
11 ma=myfunc(3,4);
0x080483b4 <main+6>: movl $0x4,0x4(%esp)
0x080483bc <main+14>: movl $0x3,(%esp)
0x080483c3 <main+21>: call 0x8048394 <myfunc>
0x080483c8 <main+26>: mov %eax,-0x4(%ebp)

12 return 0;
0x080483cb <main+29>: mov $0x0,%eax

13 }
0x080483d0 <main+34>: leave
0x080483d1 <main+35>: ret

End of assembler dump.
(gdb)

Address of Instruction

Offset from start
of function

x86 instruction

Binghamton

University

CS-220

Spring 2016

Example of disassemble without debug
(gdb) b main
Breakpoint 1 at 0x80483b4
(gdb) run
Starting program: /import/linux/home/tbarten1/CS220/examples/xmp_x86/prog

Breakpoint 1, 0x080483b4 in main ()
(gdb) disassemble
Dump of assembler code for function main:
0x080483ae <main+0>: push %ebp
0x080483af <main+1>: mov %esp,%ebp
0x080483b1 <main+3>: sub $0x18,%esp
0x080483b4 <main+6>: movl $0x4,0x4(%esp)
0x080483bc <main+14>: movl $0x3,(%esp)
0x080483c3 <main+21>: call 0x8048394 <myfunc>
0x080483c8 <main+26>: mov %eax,-0x4(%ebp)
0x080483cb <main+29>: mov $0x0,%eax
0x080483d0 <main+34>: leave
0x080483d1 <main+35>: ret
End of assembler dump.
(gdb)

Notice… break in main
AFTER function entry!

Notice… break in main
AFTER function entry!

Binghamton

University

CS-220

Spring 2016

Stepping through C/x86 code

• With debug, step executes to next (debugged) C instruction
• If you invoke a function that was compiled without debug, skips that

function!

• Without debug, step moves to next (debugged) C instruction
• Often, OS function that invokes main!

• Practically Useless!

• Alternatives : nexti and stepi
• Executes to the next x86 instruction

• nexti skips function calls

• stepi can step into protected (invisible) code!

Binghamton

University

CS-220

Spring 2016

Example of stepi without debug
Breakpoint 1, 0x080483b4 in main ()
(gdb) disas
Dump of assembler code for function main:
0x080483ae <main+0>: push %ebp
0x080483af <main+1>: mov %esp,%ebp
0x080483b1 <main+3>: sub $0x18,%esp
0x080483b4 <main+6>: movl $0x4,0x4(%esp)
0x080483bc <main+14>: movl $0x3,(%esp)
0x080483c3 <main+21>: call 0x8048394 <myfunc>
0x080483c8 <main+26>: mov %eax,-0x4(%ebp)
0x080483cb <main+29>: mov $0x0,%eax
0x080483d0 <main+34>: leave
0x080483d1 <main+35>: ret
End of assembler dump.
(gdb) stepi
0x080483bc in main ()
(gdb) stepi
0x080483c3 in main ()
(gdb) stepi
0x08048394 in myfunc ()
(gdb)

starting location

after 1 stepi

after 2 stepi

after 3 stepi

Binghamton

University

CS-220

Spring 2016

Avoid Stepping Into Protected Code

• If you do, stepi continues to work…

• But you can’t see where you are

• You can’t see the instructions you are executing

• You may use the “finish” command to continue this function until it
returns to its caller

Binghamton

University

CS-220

Spring 2016

Continuous x86 Assembler Print

• When I debug at the C level, gdb prints out the C instruction it is
about to execute

• When I do “stepi” or “nexti”, all I get is an address…

• Until I execute:

(gdb) set disassemble-next-line on

Binghamton

University

CS-220

Spring 2016

stepi with disassemble-next-line
(gdb) set disassemble-next-line on
(gdb) b main
Breakpoint 1 at 0x80483b4
(gdb) run
Starting program: /import/linux/home/tbarten1/CS220/examples/xmp_x86/prog

Breakpoint 1, 0x080483b4 in main ()
0x080483b4 <main+6>: c7 44 24 04 04 00 00 00 movl $0x4,0x4(%esp)
(gdb) stepi
0x080483bc in main ()
0x080483bc <main+14>: c7 04 24 03 00 00 00 movl $0x3,(%esp)
(gdb) stepi
0x080483c3 in main ()
0x080483c3 <main+21>: e8 cc ff ff ff call 0x8048394 <myfunc>
(gdb) stepi
0x08048394 in myfunc ()
0x08048394 <myfunc+0>: 55 push %ebp
(gdb)

object code

Binghamton

University

CS-220

Spring 2016

Breakpoints in X86

• Its no fun to step through an entire program.

• I want to set a breakpoint… but there is no line number
• Especially if there is no debug turned on!

• (gdb) break *<address>

• Sets a breakpoint at a specific instruction address
• To specify a hexadecimal address, use “0x” prefix!

Binghamton

University

CS-220

Spring 2016

break at addr Dump of assembler code for function main:
0x080483ae <main+0>: push %ebp
0x080483af <main+1>: mov %esp,%ebp
0x080483b1 <main+3>: sub $0x18,%esp
0x080483b4 <main+6>: movl $0x4,0x4(%esp)
0x080483bc <main+14>: movl $0x3,(%esp)
0x080483c3 <main+21>: call 0x8048394 <myfunc>
0x080483c8 <main+26>: mov %eax,-0x4(%ebp)
0x080483cb <main+29>: mov $0x0,%eax
0x080483d0 <main+34>: leave
0x080483d1 <main+35>: ret
End of assembler dump.
(gdb) b *080483c3
Invalid number "080483c3".
(gdb) b *x080483c3
No symbol table is loaded. Use the "file" command.
(gdb) b *0x080483c3
Breakpoint 2 at 0x80483c3
(gdb) c
Continuing.

Breakpoint 2, 0x080483c3 in main ()
0x080483c3 <main+21>: e8 cc ff ff ff call 0x8048394 <myfunc>
(gdb)

Binghamton

University

CS-220

Spring 2016

Register Information

• (gdb) info reg

• Displays x86 regs and values

(gdb) info reg
eax 0xffffdab4 -9548
ecx 0x6a0e39fb 1779317243
edx 0x1 1
ebx 0xf7fafff4 -134545420
esp 0xffffd9f0 0xffffd9f0
ebp 0xffffda08 0xffffda08
esi 0x0 0
edi 0x0 0
eip 0x80483c8 0x80483c8 <main+26>
eflags 0x286[PF SF IF]
cs 0x23 35
ss 0x2b 43
ds 0x2b 43
es 0x2b 43
fs 0x0 0
gs 0x63 99

Binghamton

University

CS-220

Spring 2016

Memory
• (gdb) x /<nfu> <address_expression>

• eXamines memory starting at <address_expression> using format <nfu>

• <n> - Number of values to print

• <f> - Format:

• <u> - Unit size

• Address expression can be
• Constant, e.g. (gdb) x /4i 0x1004011b5

• Register, e.g. (gdb) x /4i $eip

• Pointer variable, e.g. (gdb) x /8cb argv[0]

f

x hexadecimal

d decimal

u unsigned dec

f floating point

a address

c character

s string

i instruction

u

b 1

h 2

w 4

q 8

Binghamton

University

CS-220

Spring 2016

Don’t Forget Other Cool GDB stuff

(gdb)break *0x080483c3 if $eax > 13

(gdb) commands

x /4dw $esp

stepi

end

(gdb)

