Binghamton CS-220

University Spring 2016

X86 Debug

Computer Systems Section 3.11

Binghamton CS-220

University Spring 2016

GDB is a "Source Level” debugger

* We have learned how to debug at the C level
* Now, C has been translated to X86 assembler!
* How does GDB play the shell game?

* Makes it seem like we execute C code
* Actually we are executing X86 Assembler Code

* How do we debug at the X86 level?

Binghamton CS-220

University Spring 2016

Simple C Function

int myfunc(int a,int b) {
Int C;
c=a-+ 3;
C=cC+ b;
return c;

Binghamton CS-220

University Spring 2016

gcc -m32 -0O0 -S prog.c

prog.c prog.s

2. int myfunc(int a,int b) { ™ . e

3. intg T stsven
4 c=a+3; e
5. c=c+b o
6. returnc s
7.} leave

ret

Binghamton CS-220

University Spring 2016

myfunc x86 view Memory

xFFFF FFFO
b xFFFF FFEC | x0000 0004
a| xFFFF FFE8 | x0000 0003

myfunc:
pushl %ebp
movl %esp, %ebp

int myfunc(int a,int b)4=——

int c- subl $16, %esp XFFFF FEE4
! | movl 8(%ebp), %eax xFFFF FFEO
cC=a-+ 3, 8@€” $3. heax ¢ xFFFF FFDC | x0000 000A

C=¢C+ b;\ movl %eax, -4(%ebp) xFFFF FFD8
return c; \mow 12(%ebp), %eax
‘aweax, -4(%ebp)

movl -4(%ebp), %eax

ret ebp xFFFF FFEOQO
eax x0000 000A

Binghamton CS-220

University Spring 2016

Cross Reference Information

 Function Cross Reference

» Always keep a list of function names, and the location of the first
instruction in that function in the executable command

* The —g flag to the compiler tells the compiler to generate and save
more cross reference information

* For each line of code, the address of the first instruction associated with
that code

* For each variable, the location and type of the variable stored in memory
* For each function, the parameter list

Binghamton

CS-220

University

Spring 2016

Example Cross Reference

xFFFF FFFO
b xFFFF FFEC | x0000 0004
a xFFFF FFE8 x0000 0003
xFFFF FFE4
xFFFF FFEQ
c| xFFFFFFDC x0000 000A
xFFFF FFD8
add $0x3,%eax x0804 839d 83c003
mov 0x8(%ebp),%eax x0804 839a | 8b4508
sub $0x10,%esp x08048 397 | 83ecl10
mov %esp,%ebp | x0804 8395 | 89e5
pushl %ebp = x0804 8394 | 55

Func | Location Parms

myfn x0804 839a

main

s | .
e |

Binghamton CS-220

University Spring 2016

Breakpoint Processing

* When you set a breakpoint...
* GDB looks up address of first instruction at that breakpoint
* Replaces the beginning of the instruction with a TRAP (e.g. 1/0)

 When the trap is executed, it causes the OS to transfer to the trap
handler... (in this case, gdb has registered a trap handler)

* The trap handler invokes the GDB prompt

* On continue, replace trap with correct instruction, single step,
then replace trap

Binghamton

CS-220

University

Example break 4

XxFFFF FFFO
b xFFFF FFEC | x0000 0004
a xFFFF FFE8 | x0000 0003
xFFFF FFE4
xFFFF FFEO
c¢| xFFFFFFDC | x0000 000A
xFFFF FFDS8
add $0x3,%eax x0804 839d | 83¢c003
mov 0x8(%ebp),%eax x0804 839a | TRAP; 8b4508
sub $0x10,%esp x08048 397 | 83ecl10
mov %esp,%ebp | x0804 8395 | 89e5
pushl %ebp =~ x0804 8394 | 55

Spring 2016

Func | Location Parms

myfn x0080 483b1l
main ... x0804 839a

s | .
e |
manit |
man1z |

Binghamton CS-220

University Spring 2016

Displaying x86 Instructions

(gdb) disas[semble| [/m]|

* prints object and x86 assembler version of current function
* /m - include C symbols/instructions when available

Binghamton CS-220
University Spring 2016

Example of disassemble with debug

(gdb) disassemble /m

Dump of assembler code for function main:

9 int main() {

0x080483ae <main+0>: push %ebp
Address of Instruction 0x0R" r63af <main+1>: mov %esp,%ebp

ux080483b1 < rdin+3>: sub $0x18,%esp

Offset from start .
1V Int ma;

of function 11 ma=myfunc(3,4);

0x080483b4 <main+6>: movl $0x4,0x4(%esp)
x86 instruction 0x080483bc <main+14>: movl $0x3,(%esp)

0x080483c3 <main+21>: call 0x8048394 <myfunc>

0x080483c8 <main+26>: mov %eax,-0x4(%ebp)

12 return 0;
0x080483cb <main+29>: mov $0x0,%eax

13 }
0x080483d0 <main+34>: leave
0x080483d1 <main+35>: ret

End of assembler dump.
(gdb)

Binghamton CS-220
University Spring 2016

Example of disassemble without debuc

(gdb) b main
Breakpoint 1 at 0x80483b4

(gdb) run

Starting program: /import/linux/home/tbarten1/CS220/examples/xmp_x86/prog

Breakpoint 1, 0x080483b4 in main ()
(gdb) disassemble

Dump of assembler code for function main: Notice... break in main
0x080483ae <main+0>: push %ebp AFTER function entry!
0x080483af <main+1>: mov %esp,%ebp
0x080483b1 <main+3>: sub $0x18,%esp
0x080483b4 <main+6>: movl $0x4,0x4(%esp)
0x080483bc <main+14>: movl $0x3,(%esp)
0x080483c3 <main+21>: call 0x8048394 <myfunc>
0x080483¢c8 <main+26>: mov %eax,-0x4(%ebp)
0x080483cb <main+29>: mov $0x0,%eax
0x080483d0 <main+34>: leave

0x080483d1 <main+35>: ret

End of assembler dump.

(gdb)

Binghamton CS-220

University Spring 2016

Stepping through C/x86 code

* With debug, step executes to next (debugged) C instruction
* If you invoke a function that was compiled without debug, skips that
function!
* Without debug, step moves to next (debugged) C instruction
* Often, OS function that invokes main!
* Practically Useless!

 Alternatives : nexti and stepi
* Executes to the next x86 instruction
* nexti skips function calls
* stepi can step into protected (invisible) code!

Binghamton CS-220

University Spring 2016

Example of stepi without debug

Breakpoint 1, 0x080483b4 in main ()

(gdb) disas

Dump of assembler code for function main:
0x080483ae <main+0>: push %ebp
0x080483af <main+1>: mov %esp,%ebp
0x080483b1 <main+3>: sub $OX18,%eSp Starting location
0x080483b4 <main+6>: movl $0x4,0x4(%esp)

0x080483bc <main+14>: movl $0x3,(%esp))
0x080483¢c3 <main+21>: call 0x8048394 <myfunc> after 1 stepi
0x080483c8 <main+26>: mov %eax,-0x4(%ebp)

0x080483cb <main+29>: mov $0x0,%eax after 2 stepi
0x080483d0 <main+34>: leave

0x080483d1 <main+35>: ret]
End of assembler dump. after 3 stepi
(gdb) stepi

0x080483bc in main ()
(gdb) stepi

0x080483c3 in main ()
(gdb) stepi

0x08048394 in myfunc ()
(gdb)

Binghamton CS-220

University Spring 2016

Avold Stepping Into Protected Code

* If you do, stepi continues to work...
* But you can’t see where you are
* You can't see the instructions you are executing

* You may use the “finish” command to continue this function until it
returns to its caller

Binghamton CS-220

University Spring 2016

Continuous x86 Assembler Print

* When I debug at the C level, gdb prints out the C instruction it is
about to execute

 When I do “stepi” or “nexti’, all [get is an address...

e Until I execute:

(gdb) set disassemble-next-line on

Binghamton CS-220
University Spring 2016

stepl with disassemble-next-line

(gdb) set disassemble-next-line on :

(gdb) b main object code
Breakpoint 1 at 0x80483b4

(gdb) run

Starting program: /import/linux/home/tbarten1/CS220/exampl~.,,xmp_x86/prog

Breakpoint 1, 0x080483b4 in main ()

0x080483b4 <main+6>: c7 44 24 04 04 00 00 00 movl $0x4,0x4(%esp)
(gdb) stepi

0x080483bc in main ()

0x080483bc <main+14>: c7 042403000000 movl $0x3,(%esp)
(gdb) stepi

0x080483¢3 in main ()

0x080483c3 <main+21>: e8 cc ff ff ff call 0x8048394 <myfunc>
(gdb) stepi

0x08048394 in myfunc ()

0x08048394 <myfunc+0>: 55 push %ebp

(gdb)

Binghamton CS-220

University Spring 2016

Breakpoints in X86

* Its no fun to step through an entire program.

* | want to set a breakpoint... but there is no line number
 Especially if there is no debug turned on!

* (gdb) break *<address>

* Sets a breakpoint at a specific instruction address
* To specify a hexadecimal address, use “0x” prefix!

Binghamton CS-220
University Spring 2016

b re ak at ad d r Dump of assembler code for function main:

0x080483ae <main+0>: push %ebp
0x080483af <main+1>: mov %esp,%ebp
0x080483b1 <main+3>: sub $0x18,%esp
0x080483b4 <main+6>: movl $0x4,0x4(%esp)
0x080483bc <main+14>: movl $0x3,(%esp)
0x080483c3 <main+21>: call 0x8048394 <myfunc>
0x080483c8 <main+26>: mov %eax,-0x4(%ebp)
0x080483cb <main+29>: mov $0x0,%eax
0x080483d0 <main+34>: leave

0x080483d1 <main+35>: ret

End of assembler dump.

(gdb) b *080483c3

Invalid number "080483c3".

(gdb) b *x080483¢3

No symbol table is loaded. Use the "file" command.
(gdb) b *0x080483c3

Breakpoint 2 at 0x80483c3

(gdb) c

Continuing.

Breakpoint 2, 0x080483c3 in main ()
0x080483c3 <main+21>: e8ccffffff call 0x8048394 <myfunc>

(gdb)

Binghamton CS-220

University Spring 2016

Register Information

(gdb) info reg
* (gdb) info reg eax Oxffffdab4 -9548
. ecx 0x6a0e39fb 1779317243
* Displays x86 regs and values edx 0x1 1

(0):¢ Oxf7fafff4 -134545420
esp Oxfftfd9f0 0xftffd9f0
ebp Oxffffda08 Oxffffda08
esi 0x0 0
edi 0x0 O
eip 0x80483c8 0x80483¢8 <main+26>
0x286[PF SF IF |

0x23 35

0x2b 43

0x2b 43

0x2b 43

0x0 0

0x63 99

Binghamton CS-220

University Spring 2016

Memory

* (gdb) x /<nfu> <address_expression>
* eXamines memory starting at <address_expression> using format <nfu>
* <n> - Number of values to print

+ <f> - Format

e <u> - Unitsize hexadecimal

X
* Address expression can be dijdecimal u
 Constant, e.g. (gdb) x /4i 0x1004011b5 u unsigned dec
f
d

b 1
* Register; e.g. (gdb) x /4i $eip floating point h 2
* Pointer variable, e.g. (gdb) x /8cb argv|[0] address w4
c character q 8

S string

1 instruction

Binghamton CS-220

University Spring 2016

Don’t Forget Other Cool GDB stuff

(gdb)break *0x080483c3 if $eax > 13
(gdb) commands

X /4dw $esp

stepi

end

(gdb)

